
An Evolvable Multi-Agent Approach to Space
Operations Engineering

Sanda Mandutianu, Adrian Stoica

Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, MS: 161-260

Pasadena CA 91109-8099, USA

tel: (818)354-3839, Fax: (818)393-4643

Abstract. A complex system of spacecraft and ground tracking stations, as well as a
constellation of satellites or spacecraft, has to be able to reliably withstand sudden
environment changes, resource fluctuations, dynamic resource configuration, limited
communication bandwidth, etc., while maintaining the consistency of the system as a whole.
It is not known in advance when a change in the environment might occur or when a
particular exchange will happen. A higher degree of sophistication for the communication
mechanisms between different parts of the system is required. The actual behavior has to be
determined while the system is performing and the course of action can be decided at the
individual level. Under such circumstances, the solution will highly benefit from increased
on-board and on the ground adaptability and autonomy. An evolvable architecture based on
intelligent agents that communicate and cooperate with each other can offer advantages in
this direction. This paper presents an architecture of an evolvable agent-based system
(software and software/hardware hybrids) as well as some plans for further implementation.

1 Introduction

In a complex system of satellites and
ground tracking system, as well as in a

constellation of satellites or spacecraft, there

are some generic problems that have to be
addressed. The uncertainties due to the

changing environment, the necessity to react

promptly to any critical event, the dynamic

nature of the resource configuration, require
a flexible and robust approach.

The problem of autonomy for space
applications has been addressed by several
agent-based contributions, such as the

Remote Agent Experiment for automatically

controlling and commanding the NASA
DSI spacecraft [1], or multi-agent mission

support operations [12]. A multi-agent

approach for mission operations has been
also proposed in [8].

Agent-based architectures have been

proposed for different applications such as

air traffic control [10], process control [9],

distributed problem solving [71, etc.
In this paper we address the

synergism of the multi-agent model and

evolutionary techniques in the context of a
complex space and ground communication

system. The evolutionary features of our

agents represent the system's adaptive

nature and are meant to increase its

operational robustness. Evolutionary
algorithms are considered an effective way
of generating or altering agent's behavior to

account for Changes in the physical
environment. The evolutionary methods

have been the object of several JPL research
projects [141, [41. The combination of

evolutionary techniques and agent modeling
has been a novel direction in the domain of

space systems.

For past space missions, many of
the sub-systems such as the attitude control,

navigation, telecommunication management
have been considered and operated mostly

independently. As new, more complex and
demanding missions are considered, the

different disciplines become mote

interdependent. Such examples are flight

through a planetary atmosphere, such as

landing or ascending from another planet or

the Earth, and spacecraft formation flying
where the relative configuration and

operation must be closely controlled.

Although in an integrated system
one might equally consider the possibility of

using uniform models, representations and

tools, the problem can be naturally modeled

as a set of autonomous problem solvers, or
agents, with their own resources and

expertise. In order to solve a problem

requiring all their combined distributed

capabilities, they have to interact and share
common knowledge, while simultaneously

maintaining their individuality and system
consistency.

2 The Agent Architecture

In this paper an agent is considered as
an entity described in terms of common

sense modalities such as beliefs, or

intentions. The agent structure we use has
been conceptually inspired by Shoham's

agent-based programming approach [13],
with some additions from the BDI (Beliefs,

Desires, Intentions) model [10l. although the
practical realization might differ in some

aspects.

An agent-based framework includes the

agent state, and an interpreted programming
language used to define agents(Fig, l). The

agent state is defined by four basic
components:

• beliefs: what the agent knows about the

environment and about other agents;

• capabilities: tasks to be accomplished
by the agent under given circumstances;

• commitments: tasks the agent is
committed to achieve (usually

communicated to another agent) at a
particular time;

• intentions: the decisions about how to

act in order to fulfill its commitments.

The agent execution cycle consists of

the following steps: processing new
messages, determining which rules are

applicable to the current situation, executing

Fig. 1 Agent Structure

the actions specified by these rules, updating
the mental model in accordance with these

rules, and planning new actions.

The agents use KQML (Knowledge

Query and Manipulation Language) [3].
KQML as both a language and a protocol

can be viewed as being comprised of three
layers: a content layer, a message layer and

a communication layer. The content layer is

the actual content of the message, in a
particular representation language. KQML

can carry any representation language,

including logic languages, ASCII strings,
etc.

A KQML message conceptually consists

of a performative, associated argumegts
including the real content of the message
and a set of optional arguments describing

the content in a manner that is independent

of the content language. For example, a

query about the availability of a particular
antenna might be represented as:

(ask-all :content (AVAILABLE (?antenna))

:ontology MISSION-MODEL)
The applications are considered as

knowledge based agents sharing their

knowledge by using an agent
communication language- KQML. The

infrastructure for such an open knowledge
sharing system can contain different

knowledge representation structures,

intercommunication format(s), one or more

knowledge manipulation languages, a
common shared model or set of models
(ontology) and a software framework to

allow for the development of actual software
systems[11].

4 Mission Operations Agents

To demonstrate the suitability of
agent-based architecture for mission

operations, we started with a. simple but
representative scenario where concepts such

as model sharing, ontologies and

interoperability can be adequately
represented.

A telecommunication and radio

navigation network, the Deep Space
Network (DSN) supports the communication

between the spacecraft and the ground

stations. DSN receives telemetry signals
from the spacecraft, sends commands to

control spacecraft operations, generates the
radio navigation data used to locate and

guide the spacecraft, etc. The
telecommunication link between a DSN

node and the spacecraft provides navigation
data as well as various other communication
data.

Typically, the planning and
scheduling have been coordinated for both

partners- DSN and spacecraft, on the

ground. Generalizing, any partner might

have the ability to request data. The partner
must be notified and must cooperate to

configure the link properly for the requested.
data flow. The scheduling process has to
take into account constraints and

requirements that are not the same as those

for the telecommunication processes only.
There will be probably constraints of this

sort associated with the spacecraft-to-
spacecraft links or other non-Earth links.

The following agents have been

identified as typical for the given scenario
(Fig. 2):

• Navigation Agent: ensures that the

Deep Space

/ f o, om \
lA ent' • - [Navi ationl \

I Agent J

i

Fig. 2 Multiagent Architecture

spacecraft maintains its trajectory,
controls and monitors other on-board

activities such as capturing images,
achieving science experiments, etc.
Telecom Agent: controls the on-board

telecommunication processes between

the spacecraft and the ground stations.

• Ground Complex System Agents:
control the telecommunication processes
on the ground. There are as many agents
as complex systems on the ground,
Some possible elements in "'a

navigation/telecom ontology include:

antenna, ground complex, navigation, and
telecom link (Fig. 3).

The agents can reason about what to do

,_---_- telecom link--_

I Antenna

I

Fig.3 A semantic network for a

navigation/telecom ontology

based on their current state represented by

beliefs, capabilities, existing commitments,
etc. Beliefs represent the current state of the

agent. Some examples of beliefs, given in
pseudo-code as a pair of belief name and

belief value type, are given in Fig.4.

Position (Coordl, Coord2)
Goal (String, StartTime,

EndTime, Duration, Status)
Velocity (Float)
StartTime (Time)
EndTime (Time)
Duration (Integer)
Coord I (Float)

Fig. 4 Beliefs

The agent capabilities define the

actions that the agent can perform provided
their preconditions are satisfied.

Capabilities, as opposed to beliefs, are given

for the life of an agent. Beliefs can change,

by adding new beliefs or updating existing
ones. The actions can either target the

environment in some way, or may
accomplish a communicative act.

An agent can perform physical actions

such as pointing the spacecraft to a target,
turning the camera on, achieve a science

experiment, send data to the ground

(downlink), etc. It also can send a message
to other agents asking for information,

receive messages requesting goal
achievement, and so on.

For example, consider the Telecom
Agent has to downlink data. Some of the

actions of this agent are: analyze the telecom
link, choose a ground complex to downlink,

and downlink. If the ground complex

accepts the request to downlink, it agrees to

perform the requested action at the requested
time, based on the details of the request, its
behavioral rules and its current mental

model- beliefs, existing commitments, etc.
(Fig. 5).

In general, successful execution of

.---- request downlink---_

(Telecom AgentJ (NavigatJonAgen,}

t accept/reject downlink J

Fig.5 Inter-agent Communication

an action may be beyond agent's control.

For example, a Ground Complex Agent has
committed to accept to downlink on behalf

of a Telecom Agent. Even if the necessary

preconditions are met and Telecom Agent is
able to initiate execution, the action may still
fail (e.g. a crash during the transmission).

The Ground Complex Agent must monitor
the execution so it will be able to send a

message back to the Telecom Agent to
report the success or failure of the
commitment.

The agents might be running on

different platforms and might be using

different content languages for
communication.

Theagentbehavioris describedby
its behavioral rules. The behavioral rule

extends the commitment rule by determining

the course of action that the agent takes
throughout execution.

("Forwarding downlink selection"

WHEN

IF

(BIND [VAR Goal <?g>])
(OBJ [INST Goal <?g>.name] EQUALS

[VAL String "image of Europa on

ground"])

(OBJ [[NST Goal <?g>.status] EQUALS [VAL

String "accepted'])

(OBJ IVAR Agent <?agent>.agentlnfo.namel
EQUALS

IVAL String "Telecom"])
THEN

(DO SendKqmlMessage (INEW KqmlMessage],
[VAR

Agent<?agent>.agentln fo.name],

[VAL String "achieve"],

[VAR Goal <?g>],

l],
[], [], [], [], []))

)

Fig. 6 Behavioral rule- forwarding a goal

An example of a behavioral rule is

given in Fig. 6. The rule is written using

RADL (Reticular Agent Description
Language) [I1]. RADL has extended the

idea of a commitment rule to a general
behavioral rule. Behavioral rules can be

seen as production rules where the IF part
matches against beliefs, commitments and

intentions, and the WHEN portion matches

against messages. The THEN portion

represents agent's actions and belief changes
performed in response to the current event,
internal beliefs and external environment.

The rule in Fig.6 states that if the
goal "image of Europa on ground" exists as

a belief, and it was accepted as feasible
(goal status is "accepted"), then it will be

forwarded to the telecom agent within an
"achieve" message.

The goals are opportunistically
accepted, based on current beliefs and

commitments. The decision making process

is based on knowledge based reasoning. The

plan to achieve the goals- the actual

sequence of actions can be pre-defined, are
given recipes, or a domain dependant

planning process can generate or adapt
existing plans. Goal failures result in

selection of some other plan or explanations
of reasons. Goals are communicated

between agents as content in KQML

messages in a simple declarative language
understood by the partners.

5 Evolving Agent Rules

We extend the BDI model by

allowing the behavioral rules to change

during the agent lifetime by adding an
evolutionary component to the agent control

structure. Since no single set of rules can

foresee all situations, the agent also starts

with a given set of rules, and might evolve
other, based on the interactions with the

environment and with other agents. The

population of problem solvers can adapt to a
changing environment.

Due to their high potential for optimal

solutions, evolutionary techniques (such as
genetic programming [6]) have. been

considered the appropriate method to infer

and generate new rules. Upon initiation,
only the basic agent functions are
implemented; it is assumed that these are

realized by analyzing and embedding the

necessary domain knowledge before
execution (mission). Problem solving
requests continuously arrive at the initial

agents. The agent's local decisions may
affect the system's behavior as a whole, and

the decisions are triggered by changes in the
environment.

An example of reorganization might be
illustrated by the case when the Telecom

Agent is systematically overwhelmed by

requests to transmit data and is constantly
behind the schedule. A solution is to first

evolve another algorithm for data

compression that will better perform, see for
example the work on evolvable hardware for

compression described in [4]. Secondly, a

new rule can be defined,with the new
strategy.If we considerthe possibilityof'
having certain directly hardware
implemented,finally this agent will be
possibly entirely implemented as a new

hardware component of the system, for best
performance.

In essence, the behavioral rules

represent a generic production rule:
IF x is XI AND y is YI THEN z is ZI

where x is one class in the set of possible
classes x in {Xl...Xn}, y in {YI...YM} and
z in {Zl...Zp}.

The number of possible rules increases

exponentially, considering k variables in the

antecedent each with N classes, the number
of possible rules is N^k.

6 Evolvable Agents in Hybrid
Hardware/Software

Implementation

The search space of possible rules in

which agents can evolve is potentially very

big. While evolutionary techniques proved
efficient in coping with big spaces, they are
also computationally expensive. Hundreds
of generations, each with hundreds to

thousands "trial" rule-bases may need to be

evaluated. This perspective creates the need
for very rapid rule-evaluation, which

although may not be needed by the system at
its regular performance stage, may be

required at the evolutionary adaptation
stage.

The solution we propose here is that of a
hybrid software/hardware implementation.,

more precisely, the use of a programmable
hardware component that implements the

rule system, providing very rapid rule
evaluation.

Several rule-based systems chips have
been proposed as hardware accelerators, in

particular for fuzzy rule-based systems. One
particular implementation of such a

processor implemented in analog VLSI is

proposed in [21. The rule-based processor is

programmable and can process

approximately one million rules per second.

In this context, evolution of the rule-

base takes place largely in hardware, by

selectively modifying the control bitstrings
that program the dedicated hardware.

Evolutionary experiments with hardware in

the loop are described for example in [15].

The system would start using some
pre-defined values (randomly generated, or,

when available pre-shaped from experience)
for XI and for YI. While the results are

satisfactory, there is no need to use other

rules. If the system doesn't perform well in
time, some other values may be better.

7 Final Remarks and Future
Work

Initial experiments, work towards

hardware implementation of rule-based

agents and plans for on-chip evolution has

been described. The two main goals of this
effort have been the integration of

applications into an agent based framework

and investigating agents' evolving behaviors.

In the end, this will allow the evolutionary
algorithms developed in JPL to be applied to

evolve hardware components.

There have been several agent-based
approaches to system control and in
particular to spacecraft control or mission

operations. We can cite the Remote Agent

Experiment for automatically spacecraft
controlling and commanding NASA DSI

spacecraft [1], or multi-agent approaches
such as multi-operation support operations

[11], and handling malfunctions in the
Reaction Control System (RCS) of NASA's

space shuttle [5]. Some of them solve the

problem using one single agent, such as for

DS1, or in the case of a multi-agent
approach have no explicit model for inter-

agent communication or application

integration. There is some other multi-agent
approaches with more elaborate models for

cooperation between agents such as in [16].

Further work should focus on defining
mission ontology, refining the
communicative models to allow for complex
interactions such as negotiation. We also
plan to use the chips to evolve fuzzy rule
based systems in intrinsic EHW mode (i.e.

directlyon thechip). Ultimately,suchchips
couldbepartof hybrid SW/HW evolvable

agents that can control the spacecraft
communication.

¢.

ACKNOWLEDGEMENTS

The work described in this paper was

performed at the Jet Propulsion Laboratory,

California Institute of Technology, and it
was sponsored by the JPL Director's

Research and Development Fund and by the

JPL Deep Space Network Technology

Development Pla_. _tnc_e(__ C_r_ r_ C_"

References

[1] Bernard, D.E. et al.: Design of the
Remote Agent Experiment for
Spacecraft Autonomy. In Proceedings of
IEEE Aerospace Conference, Aspen,
1998.

[21 Daud, T. Stoica, A. Thomas, T. Li, W.
and Fabunmi, J. (1999) ELIPS: toward a
sensor fusion processor on a chip. In B.
V. Dasarathy, (Ed.) Proc. of SPIE Vol
3719, Sensor Fusion: Architectures,
Algorithms, and Applications III,
Orlando, FL, 7-9 April, 1999, pp 209-
219.

[3] Finin, T., Weber, J., Wiederhold, G.,
Genesereth, M., Fritzson, R., McGuire,
J., McKay, D., Shapiro, S., Pelavin, R.,
Beck, C.: Specification of the KQML
Agent Communication Language
(Official Document of the DARPA
Knowledge Sharing Initiative's External
Interfaces Working Group), Technical
Report 92-04, Enterprise Integration
Technologies, Inc., Menlo Park,
California, 1992.

[4] Fukunaga, A, Hayworth, K, Stoica, A.
Evolvable Hardware for Spacecraft
Autonomy. In Proc. of IEEE Aerospace
Conference, Aspen, 1998.

[5] Ingrand, F.F., Georgeff, M.P., Rao, A.:
An Architecture for Real-Time
Reasoning and System Control,
http://www.laas, fr/~ felix/publis/ieee-
exp92/ieee-diag12h.html

[61 Koza, J. R. : Genetic Programming: on
the Programming of Computers by
Means of Natural Selection MA:MIT
Press Cambridge 1992

Springer Verlag, 1996.
[10] Rao, A., Georgeff, M.: BDI Agents:

From Theory to Practice. In Proceedings
of the First International Conference on
Multi-Agent Systems (ICMAS-95), San
Francisco, June 1995.

[11] Reticular Systems, Inc.
AgentBuilder- An Integrated Toolkit for
Constructing Intelligent Software
Agents, 1998.

[12] Siewert, S.: A Distributed
Operations Automation Testbed to
Evaluate System Support for Autonomy
and Operator Interaction Protocols. In
Proc. of 4" International Symposium on
Space Mission Operations and Ground
Data Systems, ESA, Forum der Technik,
Munich, Germany, September 1996.

[13] Shoham, Y.: CSLI Agent-oriented
Programming Project: Applying
software agents to software
communication, integration and HCI
(CSLI home page), Stanford University,
Center for the Study of Language and
Information, 1995.

[14] Stoica, A. Fukunaga, A, Hayworth,
K, Salazar-Lazaro, C. Evolvable
Hardware for Space Applications. In"
Proceedings of the Second International
Conference on Evolvable Systems,
Lausanne, Switzerland, 1988.

[15] Stoica. A. (1999) Towards

Evolvable Hardware Chips:
Experiments with a Programmable
Transistor Array. Proceedings of the 7th
International Conference on
Microelectronics for Neural, Fuzzy and
Bio-inspired Systems, Microneuro'99,
Granada, Spain, April 7-9, 1999

[161 Tambe, M., Johnson, W.,L., Jones,
R.,M., Ross, F.. Laird, J., E.,
Rosenbloom. P.,S.. Schwamb, K.:
Intelligent Agents for Interactive
Simulation Environments, AI Magazine,
Spring 1995.

(71 Liu. J., Sycara, K.. Emergent Constraint
Satisfaction through Multi-Agent
Coordinated Interaction, Proc. of the 5_'

European Workshop on Modeling
Autonomous Agents in a Multi-Agent
World, Neuchatel, Switzerland, 1993.

[81 Mandutianu S., Cooperative Intelligent ctqg-
Agents for Mission Support . In
Proceedings of IEEE Aerospace /tIT "7
Conference, March 1999.

[9] Muller, J.P.: The Design of Intelligent
Agents- A Layered Approach. IN
Lecture Notes in Artificial Intelligence,

o- 5.,

